TKMIT Institute of Technology


Programme Educational Objectives

Graduates of Biomedical engineering programme will be able to

PEO 1: Exhibit strong skills in problem solving, leadership, teamwork and enterprise  management.

PEO 2: Effectively communicate with healthcare professionals to know their problems and provide effective solutions.

PEO 3: Develop as professionals with higher qualifications and technical competency in Biomedical engineering or in allied fields.

PEO 4: Sustain professional development and advance to positions of greater responsibility with life-long learning.

Programme Specific Outcomes

Graduates of Biomedical engineering programme will be able to

PSO 1: Apply principles of mathematics, science and engineering to analyze and design electronic and biomedical devices.

PSO 2: Use physiological science in the biomedical product development with aid of modern tools for the need of the society.

PSO 3: Utilize principles of management to implement hospital projects in a environmentally sustainable approach.


  1. Engineering Knowledge: Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
  2. Problem Analysis: Identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
  3. Design/development of Solutions: Design solutions for complex engineering problems and design system components or processes that meet t h e specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
  4. Conduct Investigations of Complex Problems: Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
  5. Modern Tool usage: Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
  6. The Engineer and Society: Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
  7. Environment and Sustainability: Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
  8. Ethics: Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
  9. Individual and Team Work: Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
  10. Communication: Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
  11. Project Management and Finance: Demonstrate knowledge and understanding of the engineering and management principles and apply these to one’s own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
  12. Life-long Learning: Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.